

Hydrogen and Fuel Cell R&D at the Oak Ridge National Laboratory

Marilyn A. Brown, Ph.D., CEM

Director of the Energy Efficiency and Renewable Energy Program, Oak Ridge National Laboratory

Southeastern Regional Hydrogen Forum

April 29, 2003

www.ornl.gov/EERE

ORNL is researching several hydrogen production and storage technologies

Hydrogen Production

- Separations inorganic membrane technology
- Thermochemical iodine-sulfur process
- Photobiological hydrogen from engineered strains of biomass algae

Hydrogen Storage

- Bulk amorphous alloys
- Carbon materials
- Recycling of sodium borohydride
- Development of a H₂ gas sensor

Atom-size holes

Development of a Porous Inorganic Membrane Hydrogen Separation Device

Objective/Challenge

- Develop a Compact and Efficient Hydrogen Separation Device for the Purification of Hydrogen
- Develop, Through Experimental and Theoretical Approaches, Gas Separation Membranes that Meet Rigorous Performance Criteria for Flux, Separation, and Hydrogen Purity
- Transport is via molecular diffusion
- Separation may occur by:
 - Molecular sieving
 - Knudsen diffusion
 - Surface flow

Nanoporous Inorganic Membranes for High Selectivity Hydrogen Separation

Iodine-Sulfur Thermochemical Process Uses High-Temperature Heat and Water to Produce H₂

Hydrogen production from photosynthetic water splitting by designer alga

- This research involves the creation of:
- Designer alga by genetic insertion of hydrogenase promoter-programmed polypeptide proton channels in photosynthetic thylakoid membrane
- Smaller chlorophyll antenna
- O₂-tolerant hydrogenase

This project aims to deliver a H₂-production technology that can meet the DOE goal of \$10/MMBtu

Partners: NREL and UC Berkeley

Vision of H₂ production from designer alga

Designer alga H₂ production could be an attractive new energy business

Designer-alga H ₂ productivity	H ₂ energy value produced	H ₂ cash value at production site	Number of cars that could be supported
21,519 Kg H ₂ / acre.year	2,419 MMBtu / acre.year	\$18,622 / acre.year	140 cars / acre.year

13.3 million acres (40% of CRP set-aside land) would be needed to produce enough hydrogen to power all U.S. cars

Assumes: the value of H₂ at production site will be \$10 per 1.15 MMBtu and 10% solar energy conversion efficiency for the designer alga H₂ production process.

ORNL's fuel cell program focuses on component development & manufacturing

- Metallic and carbon bipolar plate development for PEM applications
- Carbon-based heat exchangers and humidifiers
- Sulfur mitigation catalysts

- New bi-directional DC/DC converter ideal for fuel cell power management
- Cell and materials modeling

Bipolar Plate Development

Challenge: Current technology for bipolar plates for PEM fuel cells (machined graphite) is too heavy and too costly.

Answer: Carbon fiber material, sealed with chemical vapor infiltrated carbon.

Graphite Foam Designed Radiators (ORNL)

Standard fin design

Corrugated fin design

- Innovative radiator designs utilize the high surface area of the graphite foam
- Foam radiators design after standard aluminum radiators have potential for 10% to 20% improvement
- Innovative designs that utilize much more of the surface area have a potential for significant increases in performance

ORNL is research infrastructure issues

- Combined heat and power systems utilizing fuel cells
- Transition to a hydrogen economy with high efficiency engines and hydrogen-rich fuels

 Modeling - transportation fuels (demand and supply) data and models

Growing Hydrogen Demand Creates a Bridge to Fuel Cell Vehicles and a Hydrogen Economy

Combined heat & power technologies are being developed to raise system efficiencies

800°F

600°F

360°F

180°F

Distributed Energy Resources

Gas-turbine

Solid Oxide Fuel Cell

Microturbine

Commercial Phosphoric Acid Fuel Cell

I.C. Engine

Residential PEM Fuel Cell

Thermally-Activated Technologies

Triple-Effect Absorption Chiller

Double-Effect Absorption Water-Cooled Chiller

Single-Effect Absorption Chiller

Desiccant Technology

Fuel Cell Power Plant and Enthalpy Recovery Wheel at ORNL

- UTC phosphoric acid fuel cell
 - 200 kW—1/3 of building electricity
 - 450,000 Btu/hr hot water @ 250°F used to heat building
 - Increases resource efficiency from 33% to 59% by combining building heating and power generation
- SEMCO enthalpy recovery system
 - Recovers enthalpy from exhaust air
 - Controls humidity of supply air in selected areas

Heat recovery from PEM fuel cells

This Plug Power fuel cell at ORNL produces 2.5–5 kW of electricity. Options for waste heat recovery are being explored

Improving engine efficiency to enable the transition to a hydrogen economy

Advanced Combustion Engines

Losses:

- Emission Controls 3 8%
- Exhaust 12%
- Thermodynamic Combustion 16 19%
 Waste Heat Recovery
- Heat Transfer 14%
- Mechanical Pumping 6%
- Friction 5%

Potential Paths

- Advanced Combustion Regimes
- Advanced Control Strategies
- Reduced Friction Coatings
- Reduced Injection Pressure
- Thermo-electrics
- Engine Electrification
- Enabling Fuels

Losses:

- Emission Controls 1 2%
- Exhaust 8%
- Thermodynamic Combustion 14%
- Heat Transfer 10%
- Mechanical Pumping 4%
- Friction 4%

Energy Security Pathway to Fuel Cell Vehicles and Hydrogen Economy

